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Introduction

MASTERY4EARNING DECISION VARIABLES

/

.!

This paper focuses owthe analysis of test data by a mastery-
.-

learning test-model. The inputs for the test model are 9e responses

of individuals to test items; these responses are classified as either

corrector incorrect. The outputs of the test model are called deci-

-sion variables. The'test model described here is algorithmic, i.e., a

mathematical model is used to compt0enuperical values for the decision

.

variables. It is an extension of the, NiSteryjearaing-Mbdef (Emrick and
.

AmAdams, 1970) as described in TM 5.:7 04. 3esel, 1971). Two decision

variables are considered; probabi/it

7-----proportion in mastery forjan ins
,1 //

s and Notatio

Variables will e represented by capital letters: If a variable

of mastery for an individual and

ctionaligroup.

_ represents a vector the elements of the vector will be represented by

the equivAlene lower case symbol.

Lower. case letters and numerals will be used as subscripts. The-

Subscript (i) refers to a test.item, (j) to an individual, (k) to a

I ,

performance measure for an objective. If a relationship among variables

dbe,s not refer to a.particular test item, individal or objective, the

corresponding subscripts will be deleted 'from the symbolic representation

of, the relationship. The script,(Wwill be used to refer to a second

test iteril in an epres on relating twocomposite tests.
, I
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_Capital letter P will refer to a .probabi ity. Functional relation-

shipawill be denoted by enclOSing the'indepent ent variable in parentheses

'(e.g., MAO will represent the conditional probability of a response X

given that the individual is in the mastery (M) tate). The set theoretic

notation M will be,used to denote not being in the mastery (M) state.

The Mastery-Learning Model ,

The mastery-learning model (TM 5-71-04) assumes at a )st measures

proficiency with respect to a single skill and thatthere\are only two

states of proficiency for that skill. Each individual is in

A

either the mastery (M) or non- mastery(M) state at the -time of testing.

The only true scores are assumed to be 0 and K (for a K-item test); all

intermediate scores are due to measurement error.

There are two. classes of measurement errors: wrong responses by

individuals it:the mastery state (0 errors) and correct responses by

individuals in the non-mastery state (a errors).

a. = the probability that an individual in the M state will give

a correct response to the ith item.

= the probability that an individualAn thg M state will give

th
an incorrect response to the

The p
'1.

and Si parameters are assumed to have true, values which are

characteristic of the test. Emrick and Adams' model has been modified

to pezmit item parameters,ratheethan single a` and R test parameterst:
I:4,

The assumption is still tade that a. and 0 have the'same,value for

every individual belonging to a common instructional-group:
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x represent the response of individual j to item i,

,

x
ij

I if a correct' is given
. ,

0-if an incorrece-resgonse is given

..:*7.,

X
j

2-- , x, , ,
lj 2j

x
3j

, .

7ci]

represent' the response vector- for individual j

et (1)

(2)

zcici (3)

Apresent the test score for individual j

Sequential analysis of the item responseewill be assumed in the deriva-

tion of the mastery;.learning model. 111e-(1), subscript will be deleted

to simplify the notation.

.

For anyvindividual,tested the following conditional probabilities

are associated with his response.to the first item:

11,(x, = 1 / 11)

P(xl =0/ 1) 75.z. pi

(x1 = 1 / M ) // =

(4)

(5)

(6)

11(xl = 0,/ 1 -al (7)

The probability.that a response indicates a Particular state can
I

computed using Bayes formbla:

PRMP(x, / .14)

P(X1)

5

(8)

X



where,

-4-,

represents the prior probability-of the mastery state,

P(x1) represents the prior or expected distribution Of x1 given by;

P(xl) = PRM.12(xl / M) + [1- PRM]iP(x1 )( (9)

For a correct response,

PRM (1-81)
P(M / x = 1)

PRM.(1-01) + [1-PRM].a1

For an incorrect response,

P(14 / xi = 0)
PRM. (81)

pRm91 f [1-PRM][1-a1]

(10)

-,, (11)

,Methods for estimating priorsprobabilities will be discussed later in

this paper.

tt'e condieional probability of mastery based op the first item

resp nse(equation 8) is used as the ,prior probability for- the second
,

item response.

P(M/x1).P(x2 /M)
13(11:1 xl 2 x2) = (12)

P(M/x1)-P(x2 /M) + [1-12(M/x1)3.P(x2/R)

Substituting equations (8) and (9) for P,(M/x1) yields;
.

'PRM [P(x1 /M)13(x2/M)]

P(Mix1 2c2)
-

pRMCp(x1 /M)P(x2/1,1)] 4- El-PEN] 'EP(IciiM),P (x251) 3
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This procedure can be repeated, sequentially computing_the conditional

,probability of mastery' given the ith item response, with the prior
/

probability based on tte_previous responses. For a K-item test;
K

PIT InP(x4

,(14)

/M)

P(M/X) 1=1
K K

PRM P(x.t/M) irr P(x. 51)
. i=1 1=1

Fot' any length test,

P(M /X) = 1-P(MIX) (15)

If average valued of all' and Si are estimated rather than item parameters,

equation (14) becomes

p (m1§) = (14) S 6)1(....S [14,R4I(&)S.(1.4; S

pati.(140)S (0K-S .

PRM : (16)

:Estimating the Proportion of Students in the Mastery State
. .

.0 os
The proportion -in- mastery for a group of.studeuts can be estimated

. .
.

.

from the observed mean score fbr the group. The following derivation of
..-

the relarionshivbetween mean score and proportion-ih-mastery makes two

independence' assumptions:

(1) The responses of a student to edch test item are independent

of the responses of all other, students in the group.

(2) An individual's responses to- the separate items on a test
, 4

can,be treated as.a sequence of independent* trials.

WS",

.7
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Let, E(S ) represent the expected score for the jth individual and,

U = .1 12 S
N

j

1=1 (17)

represent the observed sample mean for a group of N students. From

the first assumption, the expected value of the observed sample mean

is:

/I 1
'E (0) = .

N
E E (S )]

j=1

For an item with parameters

E = 1-61

(xi) = a
M

(18)

0
1
),

for the N
M individuals in the mastery state. (19)

for the (N-N
M) individuals in the non-mastery

state. (20)

From the second assumption the expected scores for individuals in the M

and M states are:

K
E (S)

M
= E

i=1
(1 -B1) for the Nim individuals in M state. (21)

K
E (S) = E

i=1
al for the N-N

M
individuals in M state. (22).

The expected value of the'observed sample mean is then,

E (U) =
1

N

1

N

Era:. E(S)I (N-Nta).E(S) 1 id

K K
. E (1:41.) (N-Nm) E al

m 4=1 iil,
t

(23)

(24)



Define the proportion -in- mastery to be,

MP' = (25)

and the estimated value of proportion in mastery for a Particular group

to be GMP.

Then,

K K
E(U) = MP. E (1-0 -a ) '+Z

i=1 i i=1
(26)

Using the observed sample mean, U, as an estimate' of E(U) and solving

for GMP

GMP - (27)

If average values of a and 0 are employed rather than item values, this

relationship simplifies to,

U/K - a
GMP, =

(28)1 -0-

An estimate the proportion of students in the mastery state can

be used for two, distinct purposes: (1) it can be used direct). -y s a

decision variable by the evaluator to judge;the effectiveness of an,
is

`instructional unit or by the teacher in selecting an appropriate strateg

for remedial instruction. If only a small percentage of 11-instructional.

group has achieved Miastety, review or second instruction for the entire

group may be warranted while tutorial assistance for non-Masters may be

preferted if a large percentage has achieved mastery; (2) it can also be
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used to estimate prior probabilities needed in'the computatisn'of

.

probability of mastery.. 7 a

Prior Probability Estimates

Two general classes of prior prbbability estimates can be.uied in

the computatiOn of probability oflmastery. The first includes all

methods which assign the same prior probability to each individual in

a group. The second class includes all methods which use other test

data obtained from an individual to estimate a "personalized" prior

probability.

The proportiOn of students in mastery estimate can be used.directly
.

as a Class41 prior probability. Each student is assigned the sameprior

probability of mastery, GMR; as the group mean score increases, the prior

-probability estimate increases for each member of thegtoup.

Emiick and Adams (1970) suggested a different type of Class 1

estimate. The anticipated instructional effects, i.e., the anticipated

'proportion of students in mastery after instruction, can be estimated

from relevant past experiences. The performance of a similar gro p of

.students-during the previous year may be relevent if the instructional

. activities are comparable. This approach may be best suited for "small"

e s a

instructional groups and replicated instructional treatments while the

GMP estimate can be used for "first time" instructional treatments

applied tb sufficiently large instructional groups.

The only type of Class 2 estimate which will be considered here is'

based'on:iest data which have been analyzed in terms of probability of

mastery of some performance objective. The only requirement is that

10



the responses of an individual to the test items currently being analyzed

be independent from the responses tn.test items used for theprior prob-

ability estimate. Thus, the. test used may be a paralld1 test for the

same performance objective, it may be a concurrently administered test

for a dif etent performance objectiVe or a previous measure of a per-

/

2.'formance o jective.

Adjustment Matrices

It will generally be desirable to'transform a probability of mastery

measure in order to use it as a personalized prior probability estimate.

A linear transformation of a prior performance measure to estimate a

personalized prior, probability will be represented Wan adjustment

matrix.

A
c(k)

a
0,1

alo a
1,1

(29)'

.A
c

'(

k)
is the adjustment matrix used to'esEimate a. personalized .prior

,,,, :

,probability for a current Oerformance MeasUre.(c)' from performance measure

04'.. The personalized prior:probabiliii:for measure (c) is then,
--....

,,... 0-,_

1s
a0

'.1-ki:1 ' %s j,c(k), 0 0 9
.'., .

' j,k

P
mi. , c(k)

a
1,0 ; . 171ik

'
usher PM

j,k
is the probability of mastery for 'the 1

th
inaividual for- ,

(30)

,

performance measure (k).

11
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The a
C

;ammeter's in ari a u tment matrix are cpndifiona/ probabilities._

For example,,

a10 is the expected probability that the individual will be in

the mastery state for the current,objectivg pn the'condition

that he was in the non-mastery. state for the prior objective.

Since the a
c,k

parameters are probabilities,
,

and-

a
0,0

a
0,1

a
1;0

a
1 1

=

=

1 (31)

(32)

Adjustment matrices have educational interpretations fot particular

choices Of prior perfOrmance measures. If the prior performance measure

\. is a pretest'in the 1Prm of a parallel measure of.the current performance

\,-4-:' .
, ,-.

.
.

measure, the adjustment matrix can be interprete' s a'representation of

instructional effectiveness. The t value for-an instructional effec-

tiveness atrix should be very blase to 1 ;0 ;since it can usually be

) assumed, that instruction will not lead to a transition from matery't

0

a non-mastery state. The al,ota/ue is for the,case of, a1 1
eqUal to

1 .

1.0, a-useful index of instructional effectiveness.
,

. ,
.

-.. 1

!Ii'a hierarchial relationship between two performance measures
4

exists, a second typo of adjustmAnt matrix with a meaningful interpie-

tation can be constructed. Suppose objective (kY.mUsE be"mastered before

the/current objective, (c), can be mastered. The adjustment inattix,

10.'

A00' should have an a
1,0

Aralue,equal. to zero.'

1
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Unbiased Prior'Piobabilitie;
.1 .

A pribr piobability estimate, for' current performance measure (c)
-

q

Based on pe'rfOrmance measure (k)- is defined to be. unbiased if: h
$

.
-

,

° GMB=' at00 (a1,1 --01Li,0] GMPIt k(33).

Ihere GMP
c

is the 'proportion-in-mastery. for th e current performance

,
measure. t, - :7

, ,

c

A graphical representation of an adjustMent matrix facilitatei the

k,

explanation of this defiiition (see Figure,1).
.:, .,

. :1.0

Prior .GUR
c

"Probability

PRM.
j,C(k)

a
1,0

- GRP
k
ti

"Probabilitiastery
1 0 for Measure k

, . , . PM],lt
,

. '

Figure 1: Adj tment matrix for estimating a prior probability for current
eformance measure (Wfram a probability ,of mastery value :

computed for'measure (k). - , ''' ,

, ' An adjustment matrix is represented graphically by a straight line,

1

. . .

which has an intercept equal to a10 and a slope'equal tor

1

, /
(a11 -;a1,0):

Equation, (33) results from substituting O P for PM and GNP for
,

PRM
j,c(k)

13

V

j,k

1

1-



A Correlational Method for Estimating Adjustment Matrix Parameters
.3.

The correlation between two dichotomous Measures can be 'computed.

using the formula for a Phi coefficient:

Phi
P
1,1

T P
1
P
2

j P1 (1 -P1) 4/ P2 (1-P2)
ti

. (34)

where-P
1
'and P

2
represent the marginal.probabilities of being in'

the (1) state for the first and second measure respectively and

1
represents the conditional-probability P(x2 = 1/x1 = 1).

1',

A contingency table can be used to display the correlation betwedn

two dichotomouSaaurea.

1-p
2

Measure 2

Measure 1

I-P P
1

P
0,1

P
140' -

P
1,1

Figure 2. Contingency table relating Variable 1 tVariable 2.

The following relations among conditional'and marginal probabilities

will be used in latdr'derivations:
ti

0.

P P
1,00,0

= 1

P0,1 -1: P1
, 1

= P1 . P1,1 + [ 1 p1,0

P1 P
2

. p1
-Ef-1321 P0,1

',.--

.

14'

(35)

(36)

(38
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.

Two contingency tables are'orbarticular interest: the contingency

7
tables for an adjustment thatrix and for,relating observed response to

true state.

Current

Measure

1 -MP
c

c

Prior .Measure

1-14P
k

MP
k

a
0,0

-.
a
0,1

a
1,0

a
1,1

Figure 3. Prior Megsure,7 Current Measure
Contingency Table

Incorrect (0)

Observed 1-PC
i

Response.,

Correct'- (1)

PCi

Time State

Mi . M

1-MP MP

.

1-ai 0i

ai
. 1- Oi_ ,.

Flgure 4.. True State -'Observed Response
.

Contingency Table fez._ a iingie,test item.

The symbol PC will be. used. to represent the pobability

correct.response to item (1). if,g respondent-ii randomly selected from
A,.

.

the population.

Observed score will be ilefilied i6 be related to true score for

measures(k) by the following equation:

-x
ilk

tk e
i,k

15

(39)
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.-.where tk is the true score;

for an individual in the non-mastery state,

'1 for an individual in the mastery state,

,. .

and e is the measurement error;
I.,k,-- t

i if non-master gives a correct response,
.,.

e. 4.=
-1 if a master gives an incorrect response,

0 otherwise.

Sigce xi Arid tkare dichotomous variables assuming only the values

zero and ani,

2'.
g (x

i,k
) = PC

i,k
(1-PC

i,k)

,and,

a,2 ,(tk) = MP (1 -MP k)
k

/ (40)

/

/

! (41')

/ -

The correlation between true score and observed score is computed using
,_....,,. .,,, , , 1 ' i

equation (34)'.'

tk)

.. sks.

le (143 ) - MP 'PC.
k i k i,k

012k (1 -MPk) A/PCi-,k (1-PCi,k),

Using relation (37) to express PCik in terms of iek,

M2k (1-MPk) (1-0i - pi)

P(xi k
, ,NiMPk, (1 -MPk) (1-PCik)'-'

Which simplifies to,
.

2-
Ok) (1-0 _-_ai)

11(x t,) =
i,k K a(ti) a(xi,k)

1.6

(42)

(43)

P



-15-

froth the general relationship for correlation,

I

a(x,t)
.A1000

a(x).a(t)
= (45)

,
.

it an readily be seen that the numerator of (44) is the covariance

of x!,, u and tk;

.

cz(*i
t
*lc tk) = a (tk).Yi,k

where'yi k-IS,,defined to be,

i,i

b

(47)

it can be-shown that the covariance of any two didhotamous items

0 a(xi , xj) = a(ti , t2)'Yiii.Yj,2

4-
/

:where t
1
is the-trueiscore for measure 1, t

2
is the true score for.

.. i.
,

measure 2 And x
12

x
i

axe observed responses to items selected from
. ,

-, .r
. c

.

meabures, 1. and 2 respectiVely. , .,,

. .
. ;

. Relations for the covariance and correlation of composite variables_
.., .

.

SK (see equation 3) are derived directly frRm item relations.

.

Define Nk to be the average value. of Yik

K
Yk

1 .

i=1 i'k

K1 K2

'a(S
1
,S2 ) =E- E

i=1' j=1,
,

i,1 ' xj,2)

Kl 'K2

= E a(t1

i=1 j=1
Yj,2



a(ti

,

K2
E y

= a(t_ t2) (1d.y
1 2
) *(x4.4y- )

19.

a t )
i=1

02
)'E Yi 1

--- a
2
(ti) (K1' Y1)

(48)

( 9- )

For Classical Test Theory, the'follo ing correction for attenuation

foriula is'useCto estimate the correlation between true scores from

the correlation between observed sco es (Lord and Novick, 1968).

2AS1 )

,(ti t2)
)a( t1)

It will be shown that this rel

(50)

n holds for the mastery learning model

SubstitUting (45) (50) yields

*

a(S1 2) g(y a(t2)

a(S,
1) 'a(s2

, t
2
)

t en using relat ons (48) and (49),
.

1

a (t
1

, t
2
) (K1y

1
) (K2y

2
) a(t

1
) a(t2)

a
2
(ti) (klN1) at2) (K2y2)

18

(51)
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E. y

aCt
f
) a(t

2
)

whi'di is an identitY.

For an adjustment matrix;

t
k
) =

a
1,1.

MP
k

- MP MP
k -c

g(era(t
k

)

1';

(52) ,

(53) .

Solving for al, yields.

a
1,1

a (tc , tk)
MP

c
. *(54)

MP
k

Using GMPic to estimate Bp
k
, GMP

c
to estimate MP

c
and the relation between,

a(tc*,Ntk and a(S , Sk) leads to;'
L;

ail
a(S

c
,

k
)

:405)

If the adjustment mairix is restricted to be unbiased, equation (33)

GMP (Kin, )' (u-y )
k 1 2

Glef
rC

canbe used to solve for the a parameter.,10

-Gee -

al'

. GMP
a
1

1 k

9411*.k

a(Se ; Sk) .

= GMP -
c.

, , , (56)

( 1 - GMP
k
)-(Kl.y

1
) (K2:y,

2
)

..

Formulas,(55) and (56) can be used to bbtain adjustment matrix

parameters empirically. Methods for estimating the a , Si parameters,

will be Oiscussed.in a subsequent paper.

. s

tT

19
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The Adjustment Matrix for Parallel Tests

;Iwo mastery tests are parallel if the correlation between'true
.

scores for.the tests is equal to 1. The correlation between two

dichotomous measured can be unity only if:

P1. = P
2

(57)

which means that the proportion -in- mastery values are equal, and',

a
1,1

= 1.0 (58)

-
From equation (37), it can be seen that perfect correlation also implies

that:

al,
0 (59)=

In the derivation,of the Mastery Learning Model, sequential analysis

. of item responses wpa askime.dlOirbe proper. This is equiyglent to, the
44s ,

assumption that one (or several) items can, be used as a prior measure:

with an adjustment matrix satisfying (58) and (59--in computing prob-

ability of mastery given one additional item response. The assumption

`reduces to the requirement that the test items are parallel measures.

It should be noted that the ai, parameters and the item diffi-
,

'culties (PCi) need not be equal. for items to be parallel. The assumption

of parallel items is.thus less restrictive than7is the case for Classical

test theory (Lord and Novick, 1968).

Reliability,Complexity, and Interpretability

The following properties influence the utility of decisions variables

as Inputs to a decision process:

20



(a) Reliability: the measurement property of-being.iepeatable.,.

. . .

A second, testing results in the same rank-ordering of individuals

(or groups) or the same classification into categories.

(b).Complexity: to make effective' decisions requires the derivation

and application of complex decision rules. A decision procedure

s

Which is difficult to explain to individuals responsible for the

decisions made will be labeled "coniplex° as well as procedures,

requiring lengthy computation.

(c) Interpretability: the decision variable has an intuitive or

easily understood meaning for the decision maker.

It is much less complicated to derive an objective basis for comparing

the reliability of decision variables than it is for the complexity and

interpretability properties. This alone is not a valid reason for seleCting

decision variables solely on the basis of reliability., The relative impor-

tance of each,Of these properties for effective decision making must be

considered; this will depend both upon the type of decision: being made and

the characteristics ofthe decision maker.

Comparison with two distinctive tests models will be used in discussing

reliability, complexity, and interpretability.

Test Model 1: Standardized-Normal

(a)-Individual.Student. Decision Variable -- standard (z) score

(b) Group, Decision. Variablegroup mean score

Test Model 2: Criterion-Referenced r

(a) Individual Student Decision Variable - -raw or percentage

correct score

(b) Group Decision Variable -- percentage exceeding criterion score

0
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Reliability indices for the Standardized-Normal test Model attempt

to assess whether the rank-ordering of individpais is pre4erved with

repeated testing. Preservation of rank-order is important for appliea-

tions requiring correlational analysis-and some se ction problems. k

Criterion-Referenced Test Model is more frequent used for different

types of applications (performance assessment_and placement): A reli-

ability index which assesses the repeatability of classification into

several (usually two) categories may be most appropriate for these

applications.

The appropriate reliability, ,index is thus dependent upon the par-
I

ticular application employing the decision variable, Reliability assess-

ment for the Mastery-Learning Model is complicated by the pOssibility of

having a number of measures available which are potential prier measures.

A different reliability coefficient can be computed'for each choice of a

prior pdrformance measure. For those who accept the notion of multiple
.10

indices of test validity, this complication should impose computational

rather than conceptual difficulties. It should be possible to select

prior measures which improve both the reliability and.*alidity of mastery

learning decision variables for those applications for which Criterion-
.,
,

Referenced analysis is currently used.'

As defined.in this paper, assessing the complexity of a decision

variable requires the prior existanca'of decision rules which have been

evaluated in terms of effectiveness. A simple decision rule which is

,.sdequate in one s4tuation may be ineffe9tive in another. Theoretically

derived decision rules using standardized scores tend to be complex

22
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(Cronbach and Gleser, 1965); they would be quite difficult to.explain to ',
.

the n47sthematicians and may require considerable computational power.

'DecisiOn prOcedures for the Criterion-Referenced Model are degraded by

the absence of an assumed distiibutionof true scores. This tends to

both complicate the decision procedui.es and reduce its effectiveness

It may be possible to -use approximate decision rules which satisfy

the complexity criterion and achieve acceptable results but the interpret-

ability of the results may suffer. Arbitrary- choice of criterion-scores

for Criteion-Referenced Models and cutting scores for Standardized-Normal

Model may simplify decision procedures at the expense of understanding

effects,of.altering the choice.

Theoretically based decision rules..dan be_derived for the Mastery/.
A

,Learning Model which are relatively siMple to explain and calculate.- For
,

interpretability, they depend only on the concepts of subjective probability'

and expected .loas...0 Emperical verification of these claims remains to be

attempted.
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